Emphasis mine."One idea for why glass gets so viscous is that there might be some hidden structure," says Weeks, associate professor of physics. "If so, one question is what size is that structure""
The Emory Physics lab began zeroing in on this question two years ago when Hetal Patel, an undergraduate who was majoring in chemistry and history, designed a wedge-shaped chamber, using glue and glass microscope slides that allowed observation of single samples of glassy materials confined at decreasing diameters.
For samples, the Emory lab used mixtures of water and tiny plastic balls Ð each about the size of the nucleus of a cell. This model system acts like a glass when the particle concentration is increased.
The samples were packed into the wedge-shaped chambers, then placed in a confocal microscope, which digitally scanned cross-sections of the samples, creating up to 480 images per second. The result was three-dimensional digital movies, showing the movement and behavior of the particles over time, within different regions of the chamber.
"The ability to take microscopy movies has greatly improved during the past five to 10 years," Weeks says. "Back in the mid-90s, the raw data from one two-hour data set would be four gigabytes. It would have completely filled up your hard drive. Now, it's just a tiny part of your hard drive, like a single DVD."
Glass, crazy glue and a microscope, and you can test the theory that's been bugging people for years.
This gets an Official Phantom A1 Awesome award for doing science with no money. NASA take note.
The Phantom Cheapskate
No comments:
Post a Comment